
Embedded Systems: Week 4 - Verilog Hardware
Description Language (Verilog HDL)
Course Overview: Welcome to Week 4, where we unlock the power of Verilog Hardware
Description Language (Verilog HDL), an essential tool for designing modern embedded
systems. In the realm of digital design, Verilog is more than just a programming language;
it's a specialized language used to describe the structure and behavior of electronic circuits.
This module will equip you with the fundamental concepts and practical skills needed to
model, simulate, and synthesize digital hardware using Verilog. We will explore various
modeling styles, from low-level gate descriptions to high-level behavioral representations,
and understand how your Verilog code translates into actual silicon. Mastering Verilog is a
crucial step towards building complex embedded systems that integrate custom hardware.

Learning Objectives: Upon successful completion of this module, you will be able to:

● Explain the purpose and significance of Hardware Description Languages (HDLs) in
the digital design flow.

● Identify and differentiate fundamental Verilog lexical conventions, including data
types, literals, and operators.

● Apply various Verilog modeling styles—gate-level, dataflow, and behavioral—to
describe digital circuits.

● Implement both combinational and sequential logic circuits using appropriate Verilog
constructs.

● Understand the critical distinction between blocking and non-blocking assignments
in behavioral modeling for correct hardware inference.

● Develop basic Verilog testbenches to simulate and verify the functional correctness
of designed hardware modules.

● Grasp the fundamental principles of logic synthesis and distinguish between
synthesizable and non-synthesizable Verilog constructs.

Module 4.1: Introduction to Hardware Description Languages (HDLs)

This section introduces the foundational concept of HDLs, explaining why they are
indispensable tools in modern digital design and how they differ from conventional software
programming languages.

● 4.1.1 What are Hardware Description Languages (HDLs)?
1. Purpose: HDLs are specialized computer languages used to formally

describe the structure and behavior of electronic circuits, ranging from simple
gates to complex microprocessors and entire systems-on-chip (SoCs). They
serve as a textual, machine-readable representation of hardware.

2. Why HDLs are Needed:
■ Complexity Management: Modern digital circuits contain millions or

even billions of transistors. Drawing schematics manually for such

complexity is impractical and error-prone. HDLs allow designers to
describe hardware at a higher level of abstraction.

■ Verification: HDLs enable simulation, where the described
hardware's behavior can be tested rigorously before actual fabrication.
This is crucial for catching design flaws early, which is significantly
cheaper than fixing them post-fabrication.

■ Synthesis: HDLs can be translated by specialized tools
(synthesizers) into physical gate-level netlists, which are then used to
create the actual silicon layout. This automates the conversion from
behavioral description to physical implementation.

■ Portability and Reusability: HDL descriptions are
technology-independent (initially), allowing the same design to be
targeted to different fabrication processes (e.g., ASICs or FPGAs).
Modules can be reused in different projects.

■ Documentation: HDL code serves as precise and unambiguous
documentation of the hardware's design.

● 4.1.2 Comparison with Software Programming Languages While HDLs share
syntax similarities with software languages like C, their underlying semantics are
fundamentally different due to the nature of hardware.

1. Parallelism/Concurrency:
■ Software: Instructions in typical software programs execute

sequentially, one after another, unless explicitly managed for
parallelism (e.g., threads, processes).

■ Hardware (HDL): Operations described in an HDL are inherently
concurrent or parallel. All parts of a digital circuit (gates, registers)
operate simultaneously unless explicitly designed to be sequential
(e.g., a state machine). This is a critical distinction that impacts how
HDL code is written and interpreted.

2. Time:
■ Software: Time is conceptual; execution speed depends on processor

speed.
■ Hardware (HDL): Time is explicit and fundamental. Propagation

delays, clock cycles, and timing relationships are inherent to the
description. HDLs include constructs for precise timing control (e.g., #
delay operator).

3. Hardware Description vs. Algorithm Execution:
■ Software: Describes algorithms that execute on a general-purpose

processor. The focus is on what to compute.
■ Hardware (HDL): Describes the physical structure and behavior of the

hardware itself. The focus is on how data flows and how operations
are performed by dedicated circuitry.

4. Compilation vs. Synthesis:
■ Software: Compiled into machine code for a specific CPU

architecture.
■ Hardware (HDL): Synthesized into a gate-level netlist (a list of

interconnected logic gates) that can be mapped onto a specific

hardware technology (e.g., FPGA Lookup Tables, ASIC standard
cells).

● 4.1.3 Verilog HDL in the Digital Design Flow Verilog plays a central role in the
modern electronic design automation (EDA) flow:

1. Specification: Initial requirements and desired functionality.
2. Architectural Design: High-level block diagram and data flow.
3. HDL Modeling (Verilog Coding): Describing the hardware using Verilog.

This can be at various levels of abstraction (gate, dataflow, behavioral,
structural).

4. Simulation & Verification: Using Verilog simulators to test the functional
correctness of the design by applying stimuli (inputs) and observing
responses (outputs). Testbenches (also written in Verilog) are crucial here.

5. Logic Synthesis: Translating the synthesizable Verilog code into a
technology-dependent netlist of logic gates (e.g., a list of AND, OR, NOT
gates, flip-flops) optimized for a target technology (ASIC or FPGA).

6. Physical Design (Place & Route): Arranging the gates on the chip (place)
and connecting them with wires (route) according to timing and area
constraints.

7. Post-Layout Simulation: Simulating the design with actual wire delays
extracted from the physical layout for final timing verification.

8. Fabrication: Manufacturing the actual silicon chip.
9. Testing: Verifying the fabricated chip.

Module 4.2: Verilog Basics and Lexical Conventions

Before writing Verilog code, it's essential to understand its fundamental building blocks: how
elements are named, what types of data can be represented, and how operations are
performed.

● 4.2.1 Keywords, Identifiers, Comments, White Spaces
○ Keywords: Reserved words in Verilog that have special meaning (e.g.,

module, endmodule, input, output, wire, reg, assign, always,
initial). These cannot be used as identifiers. All keywords are lowercase.

○ Identifiers: Names given to objects in the design, such as modules, ports,
signals (wires, registers), and parameters. They must start with a letter or
underscore, followed by letters, numbers, underscores, or dollar signs. They
are case-sensitive (e.g., my_signal is different from My_Signal).

○ Comments: Used to explain the code and are ignored by the
compiler/synthesizer.

■ Single-line comments: Start with // and extend to the end of the
line.

■ Multi-line comments: Enclosed between /* and */.
○ White Spaces: Spaces, tabs, newlines are generally ignored by the Verilog

compiler, used to improve code readability.

● 4.2.2 Data Types: Nets, Registers, and Other Types Verilog categorizes data into
types based on how they store and transmit values, reflecting actual hardware
behavior.

○ Nets (or Wires):
■ Representation: Represent physical connections between hardware

elements (e.g., wires on a circuit board).
■ Behavior: Nets do not store a value; their value is continuously driven

by the output of a connected component (a gate, a module instance,
or an assign statement). If nothing drives a net, its value is
high-impedance (z). If multiple drivers conflict, the value becomes
unknown (x).

■ Declaration: wire is the most common net type. Others include tri
(tristate), wand, wor (for wired-AND/OR logic).

■ Example: wire enable_signal; or wire [7:0] data_bus;
(for an 8-bit bus).

○ Registers (or Variables):
■ Representation: Represent data storage elements in hardware (e.g.,

flip-flops, latches, registers, or temporary variables in behavioral
blocks).

■ Behavior: Registers store a value until a new value is explicitly
assigned to them. They hold their last assigned value.

■ Declaration: reg is the most common register type.
■ Usage: Used inside initial and always procedural blocks. A reg

variable can hold a value, but it does not necessarily imply a hardware
register. If assigned combinatorially within an always block, it might
infer combinational logic or a latch. If assigned on a clock edge, it
infers a flip-flop.

■ Example: reg control_state; or reg [15:0] count_value;
○ Integer: A general-purpose register variable for integer arithmetic. Used

primarily for loop counters or general-purpose variables in behavioral blocks,
not typically for hardware inference. Defaults to 32-bit signed.

○ Time: A 64-bit unsigned quantity used to store simulation time (often used
with system tasks like $time).

○ Real/Realtime: For floating-point numbers. Not synthesizable; used only in
simulations (e.g., for analog models or complex calculations in testbenches).

○ Parameters: Constant values declared using the parameter keyword. Used
for defining fixed sizes (e.g., bit-widths, array sizes) or timing constants. They
improve code readability and reusability.

■ Example: parameter DATA_WIDTH = 8;
● 4.2.3 Literals: Number and String Representation

○ Number Literals:
■ Syntax: size'base_format value

■ size: Optional, decimal number specifying the bit width (e.g.,
8 for 8 bits).

■ base_format: Required, specifies the number base:

■ 'b or 'B for binary (e.g., 4'b1011)
■ 'o or 'O for octal (e.g., 12'o77)
■ 'd or 'D for decimal (e.g., 16'd255, or simply 255 if

size is not specified)
■ 'h or 'H for hexadecimal (e.g., 8'hFF)

■ value: The number itself.
■ Default Size: If size is omitted, the default size is system-dependent

(usually 32 bits).
■ Underscore (_): Allowed in numbers for readability, ignored by

compiler (e.g., 16'b1010_1010_1111_0000).
■ Unknown (x) and High-Impedance (z): Can be used in numbers

(e.g., 4'b10xz, 8'hFz). These are crucial for modeling unknown or
high-impedance states in hardware.

○ String Literals: Enclosed in double quotes (e.g., "Hello World!").
Primarily used for display messages in testbenches.

● 4.2.4 Operators: The Actions of Hardware Verilog provides a rich set of operators
to describe computations and logical relationships.

○ Arithmetic Operators: + (addition), - (subtraction), * (multiplication), /
(division), % (modulo), ** (power - non-synthesizable).

○ Relational Operators: >, <, >=, <=, == (equality), != (inequality), === (case
equality, includes x/z), !== (case inequality, includes x/z). Used for
comparisons.

○ Logical Operators: && (logical AND), || (logical OR), ! (logical NOT).
Operate on single-bit (boolean) operands; return 0 or 1. If an operand is x or
z, the result can be x.

○ Bitwise Operators: & (bitwise AND), | (bitwise OR), ~ (bitwise NOT), ^
(bitwise XOR), ~^ or ^~ (bitwise XNOR). Operate bit by bit on operands;
return multi-bit results.

○ Reduction Operators: & (reduction AND), | (reduction OR), ~ (reduction
NOT), ^ (reduction XOR), ~^ or ^~ (reduction XNOR). Operate on a single
multi-bit operand and produce a single-bit result (e.g., &A checks if all bits of A
are 1).

○ Shift Operators: << (left shift), >> (right shift), <<< (arithmetic left shift), >>>
(arithmetic right shift). Used for bit manipulation. Arithmetic shifts preserve the
sign bit for signed numbers.

○ Concatenation Operator: {} (e.g., {A, B, C} concatenates signals A, B,
and C into a larger vector).

○ Replication Operator: {num_copies {vector}} (e.g., {4{1'b1}}
creates 4'b1111).

○ Conditional Operator (Ternary Operator): condition ?
true_expression : false_expression. A single-line if-else
equivalent, widely used in dataflow modeling for multiplexers.

■ Example: assign out = sel ? in1 : in0;

Module 4.3: Modeling Techniques in Verilog

Verilog offers several distinct modeling styles, each suitable for describing hardware at
different levels of abstraction. Understanding these styles is crucial for effective and efficient
hardware design.

● 4.3.1 Gate-Level Modeling: The Lowest Abstraction
○ Concept: Describes a circuit in terms of interconnected basic logic gates

(primitives) as provided by Verilog's built-in gate types. This is the lowest level
of abstraction where you explicitly define each gate and its connections. It
directly corresponds to a schematic diagram.

○ Built-in Primitives: Verilog provides predefined gate primitives:
■ and, nand, or, nor, xor, xnor: Two or more inputs, one output.
■ buf, not: One input, one or more outputs (buffers and inverters).
■ bufif0, bufif1, notif0, notif1: Tristate buffers and inverters,

enabled when the control signal is 0 or 1.
○ Instantiation: Gates are instantiated (placed) within a module using the

primitive name, followed by an optional instance name, and then port
connections.

■ Port Ordering: gate_type (output, input1, input2, ...);
(e.g., and A1 (out_signal, in1, in2);)

■ Named Port Connection: gate_type (
.output_port(output_signal),
.input1_port(input1_signal), ...); (e.g., and A1
(.out(out_signal), .i1(in1), .i2(in2)); - safer for
readability and maintainability).

○ Strengths: Direct mapping to physical gates, useful for very small, custom
logic blocks where exact gate structure is critical.

○ Weaknesses: Extremely tedious and error-prone for complex designs, very
difficult to debug and modify. Not scalable.

Example: 2-input XOR Gate from NAND gates:
Verilog
module XOR_gate_structural (
 output wire Y,
 input wire A,
 input wire B
);
 wire N1, N2, N3; // Internal wires for intermediate signals

 nand #(2,3) NAND1 (N1, A, B); // Gate instance with delay
 nand NAND2 (N2, A, N1);
 nand NAND3 (N3, N1, B);
 nand NAND4 (Y, N2, N3);

endmodule

○ (Note: # represents a delay, usually only relevant for simulation.)
● 4.3.2 Dataflow Modeling: Describing Concurrent Data Assignment

○ Concept: Describes a circuit in terms of how data flows through it and how
signals are continuously assigned values based on expressions. This is a
higher level of abstraction than gate-level, focusing on the relationship
between inputs and outputs. It implicitly infers combinational logic.

○ assign Statement: The primary construct for dataflow modeling. It is a
continuous assignment statement. The expression on the right-hand side is
continuously evaluated, and its result is immediately assigned to the net
(wire) on the left-hand side. Any change in an operand on the right-hand side
triggers a re-evaluation and update.

■ Syntax: assign net_name = expression;
■ Left-Hand Side (LHS): Must be a net type (e.g., wire).
■ Right-Hand Side (RHS): Can be any valid expression involving nets,

registers, or literals.
○ Net Declaration Assignments: You can combine the declaration of a wire

with an initial assignment.
■ Example: wire sum = A ^ B;

○ Implicit Nets: If a net is used without explicit declaration (e.g., in an assign
statement), Verilog implicitly declares it as a wire. While convenient, this is
generally bad practice and can lead to errors. Always explicitly declare all
nets.

○ Strengths: Concise and readable for combinational logic, directly
synthesizable, good for modeling arithmetic and logical operations,
multiplexers, decoders.

○ Weaknesses: Cannot describe sequential logic (flip-flops, latches) or
complex control flow (loops, state machines).

Example: 2-to-1 Multiplexer using assign:
Verilog
module MUX2_1_dataflow (
 output wire Y,
 input wire D0,
 input wire D1,
 input wire S // Select line
);
 assign Y = S ? D1 : D0; // Conditional operator
endmodule

○

Example: 4-bit Ripple Carry Adder Dataflow:
Verilog
module RippleCarryAdder_4bit_dataflow (
 output wire [3:0] Sum,

 output wire CarryOut,
 input wire [3:0] A,
 input wire [3:0] B,
 input wire CarryIn
);
 wire c1, c2, c3; // Internal carries

 // Full Adder 0
 assign {c1, Sum[0]} = A[0] + B[0] + CarryIn;
 // Full Adder 1
 assign {c2, Sum[1]} = A[1] + B[1] + c1;
 // Full Adder 2
 assign {c3, Sum[2]} = A[2] + B[2] + c2;
 // Full Adder 3
 assign {CarryOut, Sum[3]} = A[3] + B[3] + c3;

endmodule

○ (Note: {CarryOut, Sum[3]} uses concatenation for multi-bit assignment.
Verilog's + operator infers an adder.)

● 4.3.3 Behavioral Modeling: Describing Sequential and Complex Logic
○ Concept: Describes a circuit's behavior at an algorithmic level, focusing on

what the circuit does rather than how it's implemented with gates. This is the
highest level of abstraction for hardware description in Verilog. It uses
procedural blocks (initial, always) to describe operations that execute
sequentially within the block, but concurrently with other blocks.

○ Procedural Blocks:
■ initial block: Executes only once at the beginning of simulation

(time 0). Primarily used in testbenches for setting up initial conditions,
applying stimuli, and generating reports. Not synthesizable.

■ always block: Executes repeatedly whenever a signal in its
sensitivity list changes value (for combinational logic) or on a
specific clock edge (for sequential logic). This is the primary block for
synthesizable behavioral code.

■ Syntax: always @(sensitivity_list)
■ Sensitivity List: Specifies the events that trigger the execution

of the always block.
■ always @(*): For combinational logic. This is

SystemVerilog syntax that automatically includes all
inputs used in the block. In older Verilog-2001, you had
to list all inputs manually (e.g., always @(in1 or
in2 or select)).

■ always @(posedge clk): For rising-edge
triggered sequential logic (flip-flops).

■ always @(negedge clk): For falling-edge
triggered sequential logic.

■ always @(posedge clk or negedge reset_n):
For sequential logic with an asynchronous reset.

○ Blocking vs. Non-blocking Assignments: This is a crucial concept for
correct hardware modeling.

■ Blocking Assignment (=):
■ Behavior: Assignments execute sequentially within the

procedural block. The right-hand side is evaluated, and the
value is assigned to the left-hand side before the next
statement in the block executes. It "blocks" the flow until
complete.

■ When to Use: Primarily for sequential logic where you want
immediate updates within a sequence, or for procedural
variables within an initial block in testbenches. Generally
avoid for multi-statement combinational logic within
always blocks as it can lead to unintended sequential
behavior (implied latches) or simulation-synthesis
mismatches.

■ Non-blocking Assignment (<=):
■ Behavior: The right-hand side is evaluated at the current time,

but the assignment to the left-hand side is scheduled to occur
at the end of the current time step (or at the next clock edge for
sequential logic). All non-blocking assignments within an
always block are processed concurrently at the scheduled
time.

■ When to Use: Always use for modeling sequential logic
(flip-flops, registers) inside always @(posedge clk)
blocks. This ensures that all flip-flops update simultaneously
based on values from the start of the clock cycle, mirroring true
hardware behavior. Also recommended for multi-statement
combinational logic within always @(*) blocks to avoid
implicit latches.

○ Procedural Assignments to reg Type Variables: Variables (like reg) can
only be assigned values inside initial or always blocks. Nets (wires)
cannot be assigned in procedural blocks.

○ Control Flow Statements (within procedural blocks):
■ if-else if-else: Standard conditional branching.
■ case-casex-casez: Multi-way branching, useful for state machines

or decoders. casex treats x or z in the case expression or case items
as don't cares. casez treats z as don't cares.

■ for, while, repeat, forever: Looping constructs. Primarily
synthesizable for fixed loop counts (unrolled loops) or finite
iterations. forever is generally for testbenches (e.g., clock
generation).

○ Event Control (@) and Timing Control (#):

■ @ (event): Event control. Waits for a specified event to occur (e.g.,
posedge clk, negedge reset, value_change).

■ # delay: Timing control. Specifies a time delay. Used in simulation
for modeling gate delays or for generating waveforms in testbenches.
Not synthesizable.

○ Strengths: Highly expressive, allows modeling complex sequential and
combinational logic concisely, ideal for state machines, data paths, and
control logic.

○ Weaknesses: Careful use of blocking/non-blocking assignments is critical to
avoid simulation-synthesis mismatches. Requires clear understanding of
hardware inference.

● 4.3.4 Structural Modeling: Connecting Modules Hierarchically
○ Concept: Describes a circuit as an interconnection of instances of other

(sub)modules or primitives. This promotes modularity and hierarchy, allowing
complex designs to be broken down into smaller, manageable, and reusable
blocks.

○ Module Instantiation:
■ Syntax: module_name instance_name (port_connections);
■ Module Definition: First, you define the sub-module (e.g.,

full_adder_module).
■ Instantiation: Then, you "place" instances of this sub-module within a

higher-level module. Each instance gets a unique name.
○ Connecting Modules (Port Mapping):

■ Positional Port Mapping: (port1_signal, port2_signal,
...) - Connects signals based on their order in the sub-module's port
list. Error-prone if port order changes in the sub-module.

■ Named Port Mapping:
(.sub_module_port_name(connecting_signal), ...) -
Connects signals by explicitly naming the sub-module's port.
Recommended for clarity and robustness against port list changes.

○ Hierarchy: Verilog supports hierarchical design, where a top-level module
instantiates lower-level modules, which can in turn instantiate even
lower-level modules. This mirrors the hierarchical structure of real hardware.

○ Strengths: Promotes modularity, reusability, simplifies debugging, crucial for
large-scale designs.

○ Weaknesses: Requires defining all sub-modules first.

Example: 4-bit Ripple Carry Adder using Structural Modeling (instantiating Full Adder
modules):
Verilog
// Define a Full Adder module (could be behavioral or dataflow)
module FullAdder (
 output wire sum,
 output wire carry_out,
 input wire a,
 input wire b,
 input wire carry_in

);
 assign {carry_out, sum} = a + b + carry_in; // Behavioral/Dataflow
endmodule

// Define the 4-bit Ripple Carry Adder using structural modeling
module RippleCarryAdder_4bit_structural (
 output wire [3:0] Sum,
 output wire CarryOut,
 input wire [3:0] A,
 input wire [3:0] B,
 input wire CarryIn
);
 wire c1, c2, c3; // Internal carries between full adders

 // Instantiate four Full Adder modules
 FullAdder FA0 (
 .sum(Sum[0]),
 .carry_out(c1),
 .a(A[0]),
 .b(B[0]),
 .carry_in(CarryIn)
);

 FullAdder FA1 (
 .sum(Sum[1]),
 .carry_out(c2),
 .a(A[1]),
 .b(B[1]),
 .carry_in(c1)
);

 FullAdder FA2 (
 .sum(Sum[2]),
 .carry_out(c3),
 .a(A[2]),
 .b(B[2]),
 .carry_in(c2)
);

 FullAdder FA3 (
 .sum(Sum[3]),
 .carry_out(CarryOut),
 .a(A[3]),
 .b(B[3]),
 .carry_in(c3)
);

endmodule

○

Module 4.4: Combinational Logic Design using Verilog

This section focuses on translating combinational logic functions into Verilog code, primarily
using assign statements and always @(*) blocks.

● 4.4.1 Review of Combinational Logic Properties:
○ Output depends only on current inputs.
○ No memory elements.
○ No clock signal is required for function, only for synchronization if part of a

larger synchronous system.
○ Delay is due to gate propagation.

● 4.4.2 Implementing Common Combinational Circuits:
○ Multiplexers (Muxes):

Dataflow (assign): Best and most concise way. Uses conditional operator.
Verilog
module MUX4_1 (output wire Y, input wire D0, D1, D2, D3, input wire [1:0] Sel);
 assign Y = Sel[1] ? (Sel[0] ? D3 : D2) : (Sel[0] ? D1 : D0);
endmodule

■

Behavioral (always @(*) with case or if-else):
Verilog
module MUX4_1_behavioral (output reg Y, input wire D0, D1, D2, D3, input wire [1:0] Sel);
 always @(*) begin
 case (Sel)
 2'b00: Y = D0;
 2'b01: Y = D1;
 2'b10: Y = D2;
 2'b11: Y = D3;
 default: Y = 1'bx; // Handle unknown select lines
 endcase
 end
endmodule

■

Demultiplexers (Demuxes):
Verilog
module DEMUX1_4 (
 output wire Y0, Y1, Y2, Y3,
 input wire DataIn,
 input wire [1:0] Sel

);
 assign Y0 = (Sel == 2'b00) ? DataIn : 1'b0;
 assign Y1 = (Sel == 2'b01) ? DataIn : 1'b0;
 assign Y2 = (Sel == 2'b10) ? DataIn : 1'b0;
 assign Y3 = (Sel == 2'b11) ? DataIn : 1'b0;
endmodule

○

Decoders:
Verilog
module Decoder2_4 (
 output wire [3:0] Out,
 input wire [1:0] In
);
 assign Out[0] = (In == 2'b00); // Only 1 if true, else 0
 assign Out[1] = (In == 2'b01);
 assign Out[2] = (In == 2'b10);
 assign Out[3] = (In == 2'b11);
endmodule

○

Encoders (Priority Encoder example):
Verilog
module PriorityEncoder4_2 (
 output reg [1:0] EncodedOut,
 output reg Valid,
 input wire [3:0] In
);
 always @(*) begin
 Valid = 1'b1; // Default to valid
 case (In)
 4'b0001: EncodedOut = 2'b00;
 4'b001x: EncodedOut = 2'b01; // x for don't care, e.g., 0010, 0011
 4'b01xx: EncodedOut = 2'b10;
 4'b1xxx: EncodedOut = 2'b11;
 default: begin Valid = 1'b0; EncodedOut = 2'bxx; end // No input active or multiple
 endcase
 end
endmodule

○
○ Adders (Half, Full, Ripple-Carry):

■ Already demonstrated in Dataflow and Structural sections. Behavioral
could also use always @(*) and the + operator.

Comparators:
Verilog
module MagnitudeComparator_8bit (
 output wire A_gt_B, A_eq_B, A_lt_B,
 input wire [7:0] A, B
);
 assign A_eq_B = (A == B);
 assign A_gt_B = (A > B);
 assign A_lt_B = (A < B);
endmodule

○

Module 4.5: Sequential Logic Design using Verilog

This section focuses on modeling circuits that have memory, where outputs depend on past
inputs, achieved through explicit clocking and the proper use of non-blocking assignments.

● 4.5.1 Review of Sequential Logic Properties:
○ Outputs depend on current inputs AND past inputs (state).
○ Contains memory elements (flip-flops, latches).
○ Requires a clock signal for synchronous operation.
○ Behavior is defined by state transitions.

● 4.5.2 Registers, Latches, and Flip-flops:

D-Flip-flop (DFF): The most fundamental sequential element in synchronous design.
Verilog
module D_FF (
 output reg Q,
 input wire D,
 input wire clk
);
 always @(posedge clk) begin
 Q <= D; // Non-blocking assignment for sequential logic
 end
endmodule

○

D-Flip-flop with Asynchronous Reset:
Verilog
module D_FF_AsyncReset (
 output reg Q,
 input wire D,
 input wire clk,
 input wire reset_n // Active low reset
);

 always @(posedge clk or negedge reset_n) begin
 if (!reset_n) // Reset condition (active low)
 Q <= 1'b0;
 else
 Q <= D;
 end
endmodule

○
○ Implied Latches: A common pitfall. A latch is inferred when a reg variable in

an always @(*) (combinational) block is not assigned a value under all
possible conditions (e.g., missing an else branch in an if statement, or a
default case in a case statement). Latches are generally undesirable in
synchronous designs as they can cause unpredictable timing behavior.

■ How to Avoid:
1. Always assign a default value to the reg at the beginning of

the always @(*) block.
2. Ensure all if statements have else branches.
3. Ensure all case statements have default branches.
4. Use assign statements for simple combinational logic.

● 4.5.3 Counters:

Up Counter (Synchronous, N-bit):
Verilog
module UpCounter (
 output reg [7:0] count,
 input wire clk,
 input wire reset_n, // Asynchronous active-low reset
 input wire enable
);
 always @(posedge clk or negedge reset_n) begin
 if (!reset_n) begin
 count <= 8'b0; // Reset to 0
 end else if (enable) begin
 count <= count + 1; // Increment on enable
 end
 end
endmodule

○

Modulo-N Counter (e.g., Modulo-10 counter, counts 0 to 9):
Verilog
module Modulo10Counter (
 output reg [3:0] count, // 4 bits needed for 0-9
 input wire clk,
 input wire reset_n

);
 always @(posedge clk or negedge reset_n) begin
 if (!reset_n) begin
 count <= 4'b0;
 end else if (count == 4'd9) begin // Check for max count
 count <= 4'b0; // Rollover to 0
 end else begin
 count <= count + 1; // Increment
 end
 end
endmodule

○
● 4.5.4 Shift Registers:

Serial In, Serial Out (SISO):
Verilog
module SISO_ShiftRegister (
 output reg [3:0] Q, // 4-bit register
 input wire DataIn,
 input wire clk,
 input wire reset_n
);
 always @(posedge clk or negedge reset_n) begin
 if (!reset_n) begin
 Q <= 4'b0;
 end else begin
 Q <= {Q[2:0], DataIn}; // Shift right, new bit enters MSB
 end
 end
endmodule

○

Serial In, Parallel Out (SIPO):
Verilog
module SIPO_ShiftRegister (
 output wire [3:0] ParallelOut,
 input wire DataIn,
 input wire clk,
 input wire reset_n
);
 reg [3:0] shift_reg; // Internal register

 assign ParallelOut = shift_reg; // Parallel output is just the internal register

 always @(posedge clk or negedge reset_n) begin
 if (!reset_n) begin

 shift_reg <= 4'b0;
 end else begin
 shift_reg <= {shift_reg[2:0], DataIn}; // Shift right, DataIn enters MSB
 end
 end
endmodule

○

Module 4.6: Testbenches and Simulation

Writing Verilog for hardware is only half the battle. The other half is ensuring it works
correctly. Testbenches are crucial for verifying the functional correctness of your designed
hardware modules through simulation.

● 4.6.1 Purpose of Testbenches:
○ Verification: The primary goal is to verify that the "Design Under Test" (DUT)

behaves as expected under various input conditions.
○ Stimulus Generation: Apply input signals (stimuli) to the DUT over time.
○ Output Monitoring: Observe and capture the outputs of the DUT.
○ Self-Checking: Optionally compare DUT outputs against expected values to

automate verification.
○ Debugging: Provide waveforms and messages to help debug design flaws.
○ No Synthesis: Testbenches are purely for simulation and are never

synthesized into hardware. Therefore, they can use non-synthesizable
constructs (e.g., # delays, initial blocks, file I/O).

4.6.2 Structure of a Basic Testbench: A testbench is typically a top-level Verilog module
with no inputs or outputs. It instantiates the DUT and generates the necessary input
waveforms.
Verilog
module my_design_tb; // No ports for a testbench

 // 1. Declare signals (wires/regs) for connecting to the DUT's ports
 // These signals act as the inputs/outputs to your DUT
 reg clk;
 reg reset_n;
 reg [7:0] data_in_A;
 reg [7:0] data_in_B;
 wire [7:0] gcd_result_out;
 wire done_flag;

 // 2. Instantiate the Design Under Test (DUT)
 // Connect the testbench signals to the DUT's ports
 GCD_Processor DUT (
 .A_in(data_in_A),

 .B_in(data_in_B),
 .clk(clk),
 .reset_n(reset_n),
 .result_out(gcd_result_out),
 .done_flag(done_flag)
);

 // 3. Clock Generation (using an always block with forever)
 parameter CLK_PERIOD = 10; // 10 ns clock period (5 ns high, 5 ns low)
 initial begin
 clk = 1'b0; // Initial clock value
 forever #(CLK_PERIOD / 2) clk = ~clk; // Toggle clock every half period
 end

 // 4. Initial Block for Stimulus Application and Reset Generation
 initial begin
 // Apply reset (active low)
 reset_n = 1'b0;
 data_in_A = 8'b0;
 data_in_B = 8'b0;
 #(CLK_PERIOD * 2); // Hold reset for 2 clock cycles
 reset_n = 1'b1; // Release reset

 // Apply stimuli for GCD(48, 18) = 6
 data_in_A = 8'd48;
 data_in_B = 8'd18;
 #(CLK_PERIOD * 1); // Wait for one clock cycle for inputs to register

 // Wait for the done flag, or a maximum time
 wait(done_flag);
 $display("GCD(48, 18) = %0d, Expected: 6", gcd_result_out); // Display result

 // Apply new stimuli for GCD(100, 75) = 25
 data_in_A = 8'd100;
 data_in_B = 8'd75;
 #(CLK_PERIOD * 1); // Wait
 wait(done_flag);
 $display("GCD(100, 75) = %0d, Expected: 25", gcd_result_out);

 #(CLK_PERIOD * 5); // Allow some time for final signals to settle
 $finish; // End simulation
 end

 // 5. Monitoring Outputs (using system tasks)
 initial begin
 $display("Time\tClock\tReset\tA_in\tB_in\tGCD_Result\tDone");
 $monitor("%0t\t%b\t%b\t%0d\t%0d\t%0d\t\t%b", $time, clk, reset_n, data_in_A,
data_in_B, gcd_result_out, done_flag);

 end

endmodule

●
● 4.6.3 System Tasks for Simulation:

○ $display("format_string", arg1, ...);: Prints messages to the
console during simulation. Behaves like printf in C.

○ $monitor("format_string", arg1, ...);: Prints messages to the
console whenever any of its arguments change value. Useful for continuously
tracking signals. Only one $monitor can be active at a time.

○ $strobe("format_string", arg1, ...);: Similar to $display, but
prints values at the very end of the current simulation time step, after all
values have stabilized. Useful for seeing final results for a given time step.

○ $time: Returns the current simulation time.
○ $finish;: Terminates the simulation.
○ $stop;: Halts the simulation, allowing interaction (e.g., examining

waveforms).
○ $dumpfile("filename.vcd");, $dumpvars(0,

testbench_instance);: Used to create a Value Change Dump (VCD) file
for waveform viewing in a waveform viewer.

4.6.4 Self-Checking Testbenches (Briefly): More advanced testbenches include logic to
automatically check if the DUT's outputs match expected values, reporting "PASS" or "FAIL".
This reduces manual verification effort.
Verilog
// Example within initial block after getting result
if (gcd_result_out == 8'd6) begin
 $display("TEST PASSED for GCD(48, 18)");
end else begin
 $display("TEST FAILED for GCD(48, 18): Got %0d, Expected 6", gcd_result_out);
end

●

Module 4.7: Synthesis Concepts

This section bridges the gap between your Verilog code and actual physical hardware,
explaining how a logic synthesizer translates your description into a circuit of interconnected
gates.

● 4.7.1 What is Logic Synthesis?
○ Definition: Logic synthesis is the automated process of translating a

high-level HDL description (like Verilog) of a digital circuit into an optimized,
technology-specific gate-level netlist.

○ Netlist: A netlist is a description of the circuit in terms of basic logic gates
(AND, OR, NOT, flip-flops) and their interconnections, typically provided by a
"standard cell library" for ASICs or specific "logic elements" (like Lookup
Tables and Flip-flops) for FPGAs.

○ Goals of Synthesis:
■ Functionality: Ensure the synthesized netlist implements the exact

logical behavior described in the HDL code.
■ Optimization: Minimize area (number of gates), maximize speed

(meet timing constraints, reduce critical path), and minimize power
consumption, based on user-defined constraints.

■ Technology Mapping: Map the optimized logic onto the specific
gates available in the chosen target technology library.

● 4.7.2 Synthesizable vs. Non-Synthesizable Constructs Not all Verilog constructs
describe physical hardware. Some are purely for simulation and will be ignored or
cause errors during synthesis.

○ Synthesizable Constructs (Hardware Realizable): These describe
structures that can be built using physical gates and wires.

■ module declarations, input, output, inout ports.
■ wire, reg (when used appropriately to infer combinational or

sequential logic).
■ assign statements (for combinational logic).
■ always @(*) for combinational logic (ensuring no implied latches).
■ always @(posedge clk) or always @(negedge clk) for

sequential logic (flip-flops, registers).
■ if-else, case statements (when fully specified to avoid latches).
■ Arithmetic, logical, bitwise, relational, reduction, shift, concatenation,

conditional operators.
■ parameter (defines constants).
■ for loops with fixed, calculable bounds (synthesizer "unrolls" them

into combinational logic).
○ Non-Synthesizable Constructs (Simulation-Only): These describe

testbench behavior, timing, or high-level abstract concepts that don't have
direct hardware equivalents.

■ initial blocks.
■ Timing control (#delay).
■ System tasks ($display, $monitor, $finish, $time, file I/O).
■ real, realtime data types.
■ force, release statements (for overriding signals in simulation).
■ forever, while, repeat loops without fixed bounds (synthesizer

cannot unroll them).
■ Recursive functions/tasks.
■ specify blocks (for timing specification).

● 4.7.3 Common Synthesis Issues:
○ Implied Latches: As discussed in Module 4.5, if a reg variable in an always

@(*) block is not assigned a value under all possible input conditions, the

synthesizer will infer a latch to hold its value. Latches can lead to race
conditions and are harder to analyze for timing, making them generally
undesirable in synchronous designs.

■ Solution: Always provide a default assignment or ensure all
conditional paths are covered (else for if, default for case).

○ Combinational Loops: Occur when a signal's value depends on itself
through a purely combinational path, creating an oscillation or undefined
state.

■ Example: assign A = B & C; assign C = A | D; (creates a
loop: A -> C -> A).

■ Problem: Such loops are unstable and problematic in hardware.
■ Solution: Avoid direct combinational feedback loops. If feedback is

necessary, it must go through a sequential element (flip-flop) to break
the loop and synchronize it to a clock.

○ Over-constrained or Under-constrained Designs: If timing constraints are
too tight, synthesis might fail. If too loose, the resulting hardware might be
slower than necessary.

○ Unintended Logic Sharing: Synthesizers try to optimize. If not careful,
distinct parts of your logic might get unintentionally merged.

○ Poorly Written RTL (Register Transfer Level) Code: Ambiguous or
inefficient Verilog code can lead to sub-optimal synthesis results (larger area,
slower speed). Clear, concise, and structured RTL coding style is critical.

● 4.7.4 Mapping to Target Technology:
○ ASIC (Application-Specific Integrated Circuit): Synthesizers map your

design onto standard cells from a specific foundry's library. These are
pre-designed and characterized basic gates (AND, OR, NOT), flip-flops,
adders, etc., with known area, delay, and power characteristics.

○ FPGA (Field-Programmable Gate Array): Synthesizers map your design
onto the FPGA's programmable logic blocks, typically consisting of Look-Up
Tables (LUTs) (which can implement any Boolean function), flip-flops, and
dedicated logic like adders or multipliers. The physical interconnections are
configured electronically.

	Embedded Systems: Week 4 - Verilog Hardware Description Language (Verilog HDL)
	Module 4.1: Introduction to Hardware Description Languages (HDLs)
	Module 4.2: Verilog Basics and Lexical Conventions
	Module 4.3: Modeling Techniques in Verilog
	Module 4.4: Combinational Logic Design using Verilog
	Module 4.5: Sequential Logic Design using Verilog
	Module 4.6: Testbenches and Simulation
	Module 4.7: Synthesis Concepts

