
Embedded Systems: Week 4 - Verilog Hardware 
Description Language (Verilog HDL) 
Course Overview: Welcome to Week 4, where we unlock the power of Verilog Hardware 
Description Language (Verilog HDL), an essential tool for designing modern embedded 
systems. In the realm of digital design, Verilog is more than just a programming language; 
it's a specialized language used to describe the structure and behavior of electronic circuits. 
This module will equip you with the fundamental concepts and practical skills needed to 
model, simulate, and synthesize digital hardware using Verilog. We will explore various 
modeling styles, from low-level gate descriptions to high-level behavioral representations, 
and understand how your Verilog code translates into actual silicon. Mastering Verilog is a 
crucial step towards building complex embedded systems that integrate custom hardware. 

Learning Objectives: Upon successful completion of this module, you will be able to: 

● Explain the purpose and significance of Hardware Description Languages (HDLs) in 
the digital design flow. 

● Identify and differentiate fundamental Verilog lexical conventions, including data 
types, literals, and operators. 

● Apply various Verilog modeling styles—gate-level, dataflow, and behavioral—to 
describe digital circuits. 

● Implement both combinational and sequential logic circuits using appropriate Verilog 
constructs. 

● Understand the critical distinction between blocking and non-blocking assignments 
in behavioral modeling for correct hardware inference. 

● Develop basic Verilog testbenches to simulate and verify the functional correctness 
of designed hardware modules. 

● Grasp the fundamental principles of logic synthesis and distinguish between 
synthesizable and non-synthesizable Verilog constructs. 

 

Module 4.1: Introduction to Hardware Description Languages (HDLs) 

This section introduces the foundational concept of HDLs, explaining why they are 
indispensable tools in modern digital design and how they differ from conventional software 
programming languages. 

● 4.1.1 What are Hardware Description Languages (HDLs)? 
1. Purpose: HDLs are specialized computer languages used to formally 

describe the structure and behavior of electronic circuits, ranging from simple 
gates to complex microprocessors and entire systems-on-chip (SoCs). They 
serve as a textual, machine-readable representation of hardware. 

2. Why HDLs are Needed: 
■ Complexity Management: Modern digital circuits contain millions or 

even billions of transistors. Drawing schematics manually for such 



complexity is impractical and error-prone. HDLs allow designers to 
describe hardware at a higher level of abstraction. 

■ Verification: HDLs enable simulation, where the described 
hardware's behavior can be tested rigorously before actual fabrication. 
This is crucial for catching design flaws early, which is significantly 
cheaper than fixing them post-fabrication. 

■ Synthesis: HDLs can be translated by specialized tools 
(synthesizers) into physical gate-level netlists, which are then used to 
create the actual silicon layout. This automates the conversion from 
behavioral description to physical implementation. 

■ Portability and Reusability: HDL descriptions are 
technology-independent (initially), allowing the same design to be 
targeted to different fabrication processes (e.g., ASICs or FPGAs). 
Modules can be reused in different projects. 

■ Documentation: HDL code serves as precise and unambiguous 
documentation of the hardware's design. 

● 4.1.2 Comparison with Software Programming Languages While HDLs share 
syntax similarities with software languages like C, their underlying semantics are 
fundamentally different due to the nature of hardware. 

1. Parallelism/Concurrency: 
■ Software: Instructions in typical software programs execute 

sequentially, one after another, unless explicitly managed for 
parallelism (e.g., threads, processes). 

■ Hardware (HDL): Operations described in an HDL are inherently 
concurrent or parallel. All parts of a digital circuit (gates, registers) 
operate simultaneously unless explicitly designed to be sequential 
(e.g., a state machine). This is a critical distinction that impacts how 
HDL code is written and interpreted. 

2. Time: 
■ Software: Time is conceptual; execution speed depends on processor 

speed. 
■ Hardware (HDL): Time is explicit and fundamental. Propagation 

delays, clock cycles, and timing relationships are inherent to the 
description. HDLs include constructs for precise timing control (e.g., # 
delay operator). 

3. Hardware Description vs. Algorithm Execution: 
■ Software: Describes algorithms that execute on a general-purpose 

processor. The focus is on what to compute. 
■ Hardware (HDL): Describes the physical structure and behavior of the 

hardware itself. The focus is on how data flows and how operations 
are performed by dedicated circuitry. 

4. Compilation vs. Synthesis: 
■ Software: Compiled into machine code for a specific CPU 

architecture. 
■ Hardware (HDL): Synthesized into a gate-level netlist (a list of 

interconnected logic gates) that can be mapped onto a specific 



hardware technology (e.g., FPGA Lookup Tables, ASIC standard 
cells). 

● 4.1.3 Verilog HDL in the Digital Design Flow Verilog plays a central role in the 
modern electronic design automation (EDA) flow: 

1. Specification: Initial requirements and desired functionality. 
2. Architectural Design: High-level block diagram and data flow. 
3. HDL Modeling (Verilog Coding): Describing the hardware using Verilog. 

This can be at various levels of abstraction (gate, dataflow, behavioral, 
structural). 

4. Simulation & Verification: Using Verilog simulators to test the functional 
correctness of the design by applying stimuli (inputs) and observing 
responses (outputs). Testbenches (also written in Verilog) are crucial here. 

5. Logic Synthesis: Translating the synthesizable Verilog code into a 
technology-dependent netlist of logic gates (e.g., a list of AND, OR, NOT 
gates, flip-flops) optimized for a target technology (ASIC or FPGA). 

6. Physical Design (Place & Route): Arranging the gates on the chip (place) 
and connecting them with wires (route) according to timing and area 
constraints. 

7. Post-Layout Simulation: Simulating the design with actual wire delays 
extracted from the physical layout for final timing verification. 

8. Fabrication: Manufacturing the actual silicon chip. 
9. Testing: Verifying the fabricated chip. 

 

Module 4.2: Verilog Basics and Lexical Conventions 

Before writing Verilog code, it's essential to understand its fundamental building blocks: how 
elements are named, what types of data can be represented, and how operations are 
performed. 

● 4.2.1 Keywords, Identifiers, Comments, White Spaces 
○ Keywords: Reserved words in Verilog that have special meaning (e.g., 

module, endmodule, input, output, wire, reg, assign, always, 
initial). These cannot be used as identifiers. All keywords are lowercase. 

○ Identifiers: Names given to objects in the design, such as modules, ports, 
signals (wires, registers), and parameters. They must start with a letter or 
underscore, followed by letters, numbers, underscores, or dollar signs. They 
are case-sensitive (e.g., my_signal is different from My_Signal). 

○ Comments: Used to explain the code and are ignored by the 
compiler/synthesizer. 

■ Single-line comments: Start with // and extend to the end of the 
line. 

■ Multi-line comments: Enclosed between /* and */. 
○ White Spaces: Spaces, tabs, newlines are generally ignored by the Verilog 

compiler, used to improve code readability. 



● 4.2.2 Data Types: Nets, Registers, and Other Types Verilog categorizes data into 
types based on how they store and transmit values, reflecting actual hardware 
behavior. 

○ Nets (or Wires): 
■ Representation: Represent physical connections between hardware 

elements (e.g., wires on a circuit board). 
■ Behavior: Nets do not store a value; their value is continuously driven 

by the output of a connected component (a gate, a module instance, 
or an assign statement). If nothing drives a net, its value is 
high-impedance (z). If multiple drivers conflict, the value becomes 
unknown (x). 

■ Declaration: wire is the most common net type. Others include tri 
(tristate), wand, wor (for wired-AND/OR logic). 

■ Example: wire enable_signal; or wire [7:0] data_bus; 
(for an 8-bit bus). 

○ Registers (or Variables): 
■ Representation: Represent data storage elements in hardware (e.g., 

flip-flops, latches, registers, or temporary variables in behavioral 
blocks). 

■ Behavior: Registers store a value until a new value is explicitly 
assigned to them. They hold their last assigned value. 

■ Declaration: reg is the most common register type. 
■ Usage: Used inside initial and always procedural blocks. A reg 

variable can hold a value, but it does not necessarily imply a hardware 
register. If assigned combinatorially within an always block, it might 
infer combinational logic or a latch. If assigned on a clock edge, it 
infers a flip-flop. 

■ Example: reg control_state; or reg [15:0] count_value; 
○ Integer: A general-purpose register variable for integer arithmetic. Used 

primarily for loop counters or general-purpose variables in behavioral blocks, 
not typically for hardware inference. Defaults to 32-bit signed. 

○ Time: A 64-bit unsigned quantity used to store simulation time (often used 
with system tasks like $time). 

○ Real/Realtime: For floating-point numbers. Not synthesizable; used only in 
simulations (e.g., for analog models or complex calculations in testbenches). 

○ Parameters: Constant values declared using the parameter keyword. Used 
for defining fixed sizes (e.g., bit-widths, array sizes) or timing constants. They 
improve code readability and reusability. 

■ Example: parameter DATA_WIDTH = 8; 
● 4.2.3 Literals: Number and String Representation 

○ Number Literals: 
■ Syntax: size'base_format value 

■ size: Optional, decimal number specifying the bit width (e.g., 
8 for 8 bits). 

■ base_format: Required, specifies the number base: 



■ 'b or 'B for binary (e.g., 4'b1011) 
■ 'o or 'O for octal (e.g., 12'o77) 
■ 'd or 'D for decimal (e.g., 16'd255, or simply 255 if 

size is not specified) 
■ 'h or 'H for hexadecimal (e.g., 8'hFF) 

■ value: The number itself. 
■ Default Size: If size is omitted, the default size is system-dependent 

(usually 32 bits). 
■ Underscore (_): Allowed in numbers for readability, ignored by 

compiler (e.g., 16'b1010_1010_1111_0000). 
■ Unknown (x) and High-Impedance (z): Can be used in numbers 

(e.g., 4'b10xz, 8'hFz). These are crucial for modeling unknown or 
high-impedance states in hardware. 

○ String Literals: Enclosed in double quotes (e.g., "Hello World!"). 
Primarily used for display messages in testbenches. 

● 4.2.4 Operators: The Actions of Hardware Verilog provides a rich set of operators 
to describe computations and logical relationships. 

○ Arithmetic Operators: + (addition), - (subtraction), * (multiplication), / 
(division), % (modulo), ** (power - non-synthesizable). 

○ Relational Operators: >, <, >=, <=, == (equality), != (inequality), === (case 
equality, includes x/z), !== (case inequality, includes x/z). Used for 
comparisons. 

○ Logical Operators: && (logical AND), || (logical OR), ! (logical NOT). 
Operate on single-bit (boolean) operands; return 0 or 1. If an operand is x or 
z, the result can be x. 

○ Bitwise Operators: & (bitwise AND), | (bitwise OR), ~ (bitwise NOT), ^ 
(bitwise XOR), ~^ or ^~ (bitwise XNOR). Operate bit by bit on operands; 
return multi-bit results. 

○ Reduction Operators: & (reduction AND), | (reduction OR), ~ (reduction 
NOT), ^ (reduction XOR), ~^ or ^~ (reduction XNOR). Operate on a single 
multi-bit operand and produce a single-bit result (e.g., &A checks if all bits of A 
are 1). 

○ Shift Operators: << (left shift), >> (right shift), <<< (arithmetic left shift), >>> 
(arithmetic right shift). Used for bit manipulation. Arithmetic shifts preserve the 
sign bit for signed numbers. 

○ Concatenation Operator: {} (e.g., {A, B, C} concatenates signals A, B, 
and C into a larger vector). 

○ Replication Operator: {num_copies {vector}} (e.g., {4{1'b1}} 
creates 4'b1111). 

○ Conditional Operator (Ternary Operator): condition ? 
true_expression : false_expression. A single-line if-else 
equivalent, widely used in dataflow modeling for multiplexers. 

■ Example: assign out = sel ? in1 : in0; 



 

Module 4.3: Modeling Techniques in Verilog 

Verilog offers several distinct modeling styles, each suitable for describing hardware at 
different levels of abstraction. Understanding these styles is crucial for effective and efficient 
hardware design. 

● 4.3.1 Gate-Level Modeling: The Lowest Abstraction 
○ Concept: Describes a circuit in terms of interconnected basic logic gates 

(primitives) as provided by Verilog's built-in gate types. This is the lowest level 
of abstraction where you explicitly define each gate and its connections. It 
directly corresponds to a schematic diagram. 

○ Built-in Primitives: Verilog provides predefined gate primitives: 
■ and, nand, or, nor, xor, xnor: Two or more inputs, one output. 
■ buf, not: One input, one or more outputs (buffers and inverters). 
■ bufif0, bufif1, notif0, notif1: Tristate buffers and inverters, 

enabled when the control signal is 0 or 1. 
○ Instantiation: Gates are instantiated (placed) within a module using the 

primitive name, followed by an optional instance name, and then port 
connections. 

■ Port Ordering: gate_type (output, input1, input2, ...); 
(e.g., and A1 (out_signal, in1, in2);) 

■ Named Port Connection: gate_type ( 
.output_port(output_signal), 
.input1_port(input1_signal), ...); (e.g., and A1 
(.out(out_signal), .i1(in1), .i2(in2)); - safer for 
readability and maintainability). 

○ Strengths: Direct mapping to physical gates, useful for very small, custom 
logic blocks where exact gate structure is critical. 

○ Weaknesses: Extremely tedious and error-prone for complex designs, very 
difficult to debug and modify. Not scalable. 

Example: 2-input XOR Gate from NAND gates: 
Verilog 
module XOR_gate_structural ( 
    output wire Y, 
    input wire A, 
    input wire B 
); 
    wire N1, N2, N3; // Internal wires for intermediate signals 
 
    nand #(2,3) NAND1 (N1, A, B);        // Gate instance with delay 
    nand NAND2 (N2, A, N1); 
    nand NAND3 (N3, N1, B); 
    nand NAND4 (Y, N2, N3); 
 



endmodule 

○ (Note: # represents a delay, usually only relevant for simulation.) 
● 4.3.2 Dataflow Modeling: Describing Concurrent Data Assignment 

○ Concept: Describes a circuit in terms of how data flows through it and how 
signals are continuously assigned values based on expressions. This is a 
higher level of abstraction than gate-level, focusing on the relationship 
between inputs and outputs. It implicitly infers combinational logic. 

○ assign Statement: The primary construct for dataflow modeling. It is a 
continuous assignment statement. The expression on the right-hand side is 
continuously evaluated, and its result is immediately assigned to the net 
(wire) on the left-hand side. Any change in an operand on the right-hand side 
triggers a re-evaluation and update. 

■ Syntax: assign net_name = expression; 
■ Left-Hand Side (LHS): Must be a net type (e.g., wire). 
■ Right-Hand Side (RHS): Can be any valid expression involving nets, 

registers, or literals. 
○ Net Declaration Assignments: You can combine the declaration of a wire 

with an initial assignment. 
■ Example: wire sum = A ^ B; 

○ Implicit Nets: If a net is used without explicit declaration (e.g., in an assign 
statement), Verilog implicitly declares it as a wire. While convenient, this is 
generally bad practice and can lead to errors. Always explicitly declare all 
nets. 

○ Strengths: Concise and readable for combinational logic, directly 
synthesizable, good for modeling arithmetic and logical operations, 
multiplexers, decoders. 

○ Weaknesses: Cannot describe sequential logic (flip-flops, latches) or 
complex control flow (loops, state machines). 

Example: 2-to-1 Multiplexer using assign: 
Verilog 
module MUX2_1_dataflow ( 
    output wire Y, 
    input wire D0, 
    input wire D1, 
    input wire S  // Select line 
); 
    assign Y = S ? D1 : D0; // Conditional operator 
endmodule 

○  

Example: 4-bit Ripple Carry Adder Dataflow: 
Verilog 
module RippleCarryAdder_4bit_dataflow ( 
    output wire [3:0] Sum, 



    output wire       CarryOut, 
    input wire  [3:0] A, 
    input wire  [3:0] B, 
    input wire        CarryIn 
); 
    wire c1, c2, c3; // Internal carries 
 
    // Full Adder 0 
    assign {c1, Sum[0]} = A[0] + B[0] + CarryIn; 
    // Full Adder 1 
    assign {c2, Sum[1]} = A[1] + B[1] + c1; 
    // Full Adder 2 
    assign {c3, Sum[2]} = A[2] + B[2] + c2; 
    // Full Adder 3 
    assign {CarryOut, Sum[3]} = A[3] + B[3] + c3; 
 
endmodule 

○ (Note: {CarryOut, Sum[3]} uses concatenation for multi-bit assignment. 
Verilog's + operator infers an adder.) 

● 4.3.3 Behavioral Modeling: Describing Sequential and Complex Logic 
○ Concept: Describes a circuit's behavior at an algorithmic level, focusing on 

what the circuit does rather than how it's implemented with gates. This is the 
highest level of abstraction for hardware description in Verilog. It uses 
procedural blocks (initial, always) to describe operations that execute 
sequentially within the block, but concurrently with other blocks. 

○ Procedural Blocks: 
■ initial block: Executes only once at the beginning of simulation 

(time 0). Primarily used in testbenches for setting up initial conditions, 
applying stimuli, and generating reports. Not synthesizable. 

■ always block: Executes repeatedly whenever a signal in its 
sensitivity list changes value (for combinational logic) or on a 
specific clock edge (for sequential logic). This is the primary block for 
synthesizable behavioral code. 

■ Syntax: always @(sensitivity_list) 
■ Sensitivity List: Specifies the events that trigger the execution 

of the always block. 
■ always @(*): For combinational logic. This is 

SystemVerilog syntax that automatically includes all 
inputs used in the block. In older Verilog-2001, you had 
to list all inputs manually (e.g., always @(in1 or 
in2 or select)). 

■ always @(posedge clk): For rising-edge 
triggered sequential logic (flip-flops). 

■ always @(negedge clk): For falling-edge 
triggered sequential logic. 



■ always @(posedge clk or negedge reset_n): 
For sequential logic with an asynchronous reset. 

○ Blocking vs. Non-blocking Assignments: This is a crucial concept for 
correct hardware modeling. 

■ Blocking Assignment (=): 
■ Behavior: Assignments execute sequentially within the 

procedural block. The right-hand side is evaluated, and the 
value is assigned to the left-hand side before the next 
statement in the block executes. It "blocks" the flow until 
complete. 

■ When to Use: Primarily for sequential logic where you want 
immediate updates within a sequence, or for procedural 
variables within an initial block in testbenches. Generally 
avoid for multi-statement combinational logic within 
always blocks as it can lead to unintended sequential 
behavior (implied latches) or simulation-synthesis 
mismatches. 

■ Non-blocking Assignment (<=): 
■ Behavior: The right-hand side is evaluated at the current time, 

but the assignment to the left-hand side is scheduled to occur 
at the end of the current time step (or at the next clock edge for 
sequential logic). All non-blocking assignments within an 
always block are processed concurrently at the scheduled 
time. 

■ When to Use: Always use for modeling sequential logic 
(flip-flops, registers) inside always @(posedge clk) 
blocks. This ensures that all flip-flops update simultaneously 
based on values from the start of the clock cycle, mirroring true 
hardware behavior. Also recommended for multi-statement 
combinational logic within always @(*) blocks to avoid 
implicit latches. 

○ Procedural Assignments to reg Type Variables: Variables (like reg) can 
only be assigned values inside initial or always blocks. Nets (wires) 
cannot be assigned in procedural blocks. 

○ Control Flow Statements (within procedural blocks): 
■ if-else if-else: Standard conditional branching. 
■ case-casex-casez: Multi-way branching, useful for state machines 

or decoders. casex treats x or z in the case expression or case items 
as don't cares. casez treats z as don't cares. 

■ for, while, repeat, forever: Looping constructs. Primarily 
synthesizable for fixed loop counts (unrolled loops) or finite 
iterations. forever is generally for testbenches (e.g., clock 
generation). 

○ Event Control (@) and Timing Control (#): 



■ @ (event): Event control. Waits for a specified event to occur (e.g., 
posedge clk, negedge reset, value_change). 

■ # delay: Timing control. Specifies a time delay. Used in simulation 
for modeling gate delays or for generating waveforms in testbenches. 
Not synthesizable. 

○ Strengths: Highly expressive, allows modeling complex sequential and 
combinational logic concisely, ideal for state machines, data paths, and 
control logic. 

○ Weaknesses: Careful use of blocking/non-blocking assignments is critical to 
avoid simulation-synthesis mismatches. Requires clear understanding of 
hardware inference. 

● 4.3.4 Structural Modeling: Connecting Modules Hierarchically 
○ Concept: Describes a circuit as an interconnection of instances of other 

(sub)modules or primitives. This promotes modularity and hierarchy, allowing 
complex designs to be broken down into smaller, manageable, and reusable 
blocks. 

○ Module Instantiation: 
■ Syntax: module_name instance_name (port_connections); 
■ Module Definition: First, you define the sub-module (e.g., 

full_adder_module). 
■ Instantiation: Then, you "place" instances of this sub-module within a 

higher-level module. Each instance gets a unique name. 
○ Connecting Modules (Port Mapping): 

■ Positional Port Mapping: (port1_signal, port2_signal, 
...) - Connects signals based on their order in the sub-module's port 
list. Error-prone if port order changes in the sub-module. 

■ Named Port Mapping: 
(.sub_module_port_name(connecting_signal), ...) - 
Connects signals by explicitly naming the sub-module's port. 
Recommended for clarity and robustness against port list changes. 

○ Hierarchy: Verilog supports hierarchical design, where a top-level module 
instantiates lower-level modules, which can in turn instantiate even 
lower-level modules. This mirrors the hierarchical structure of real hardware. 

○ Strengths: Promotes modularity, reusability, simplifies debugging, crucial for 
large-scale designs. 

○ Weaknesses: Requires defining all sub-modules first. 

Example: 4-bit Ripple Carry Adder using Structural Modeling (instantiating Full Adder 
modules): 
Verilog 
// Define a Full Adder module (could be behavioral or dataflow) 
module FullAdder ( 
    output wire sum, 
    output wire carry_out, 
    input wire a, 
    input wire b, 
    input wire carry_in 



); 
    assign {carry_out, sum} = a + b + carry_in; // Behavioral/Dataflow 
endmodule 
 
// Define the 4-bit Ripple Carry Adder using structural modeling 
module RippleCarryAdder_4bit_structural ( 
    output wire [3:0] Sum, 
    output wire       CarryOut, 
    input wire  [3:0] A, 
    input wire  [3:0] B, 
    input wire        CarryIn 
); 
    wire c1, c2, c3; // Internal carries between full adders 
 
    // Instantiate four Full Adder modules 
    FullAdder FA0 ( 
        .sum(Sum[0]), 
        .carry_out(c1), 
        .a(A[0]), 
        .b(B[0]), 
        .carry_in(CarryIn) 
    ); 
 
    FullAdder FA1 ( 
        .sum(Sum[1]), 
        .carry_out(c2), 
        .a(A[1]), 
        .b(B[1]), 
        .carry_in(c1) 
    ); 
 
    FullAdder FA2 ( 
        .sum(Sum[2]), 
        .carry_out(c3), 
        .a(A[2]), 
        .b(B[2]), 
        .carry_in(c2) 
    ); 
 
    FullAdder FA3 ( 
        .sum(Sum[3]), 
        .carry_out(CarryOut), 
        .a(A[3]), 
        .b(B[3]), 
        .carry_in(c3) 
    ); 
 
endmodule 



○  

 

Module 4.4: Combinational Logic Design using Verilog 

This section focuses on translating combinational logic functions into Verilog code, primarily 
using assign statements and always @(*) blocks. 

● 4.4.1 Review of Combinational Logic Properties: 
○ Output depends only on current inputs. 
○ No memory elements. 
○ No clock signal is required for function, only for synchronization if part of a 

larger synchronous system. 
○ Delay is due to gate propagation. 

● 4.4.2 Implementing Common Combinational Circuits: 
○ Multiplexers (Muxes): 

Dataflow (assign): Best and most concise way. Uses conditional operator. 
Verilog 
module MUX4_1 (output wire Y, input wire D0, D1, D2, D3, input wire [1:0] Sel); 
    assign Y = Sel[1] ? (Sel[0] ? D3 : D2) : (Sel[0] ? D1 : D0); 
endmodule 

■  

Behavioral (always @(*) with case or if-else): 
Verilog 
module MUX4_1_behavioral (output reg Y, input wire D0, D1, D2, D3, input wire [1:0] Sel); 
    always @(*) begin 
        case (Sel) 
            2'b00: Y = D0; 
            2'b01: Y = D1; 
            2'b10: Y = D2; 
            2'b11: Y = D3; 
            default: Y = 1'bx; // Handle unknown select lines 
        endcase 
    end 
endmodule 

■  

Demultiplexers (Demuxes): 
Verilog 
module DEMUX1_4 ( 
    output wire Y0, Y1, Y2, Y3, 
    input wire DataIn, 
    input wire [1:0] Sel 



); 
    assign Y0 = (Sel == 2'b00) ? DataIn : 1'b0; 
    assign Y1 = (Sel == 2'b01) ? DataIn : 1'b0; 
    assign Y2 = (Sel == 2'b10) ? DataIn : 1'b0; 
    assign Y3 = (Sel == 2'b11) ? DataIn : 1'b0; 
endmodule 

○  

Decoders: 
Verilog 
module Decoder2_4 ( 
    output wire [3:0] Out, 
    input wire [1:0] In 
); 
    assign Out[0] = (In == 2'b00); // Only 1 if true, else 0 
    assign Out[1] = (In == 2'b01); 
    assign Out[2] = (In == 2'b10); 
    assign Out[3] = (In == 2'b11); 
endmodule 

○  

Encoders (Priority Encoder example): 
Verilog 
module PriorityEncoder4_2 ( 
    output reg [1:0] EncodedOut, 
    output reg Valid, 
    input wire [3:0] In 
); 
    always @(*) begin 
        Valid = 1'b1; // Default to valid 
        case (In) 
            4'b0001: EncodedOut = 2'b00; 
            4'b001x: EncodedOut = 2'b01; // x for don't care, e.g., 0010, 0011 
            4'b01xx: EncodedOut = 2'b10; 
            4'b1xxx: EncodedOut = 2'b11; 
            default: begin Valid = 1'b0; EncodedOut = 2'bxx; end // No input active or multiple 
        endcase 
    end 
endmodule 

○  
○ Adders (Half, Full, Ripple-Carry): 

■ Already demonstrated in Dataflow and Structural sections. Behavioral 
could also use always @(*) and the + operator. 



Comparators: 
Verilog 
module MagnitudeComparator_8bit ( 
    output wire A_gt_B, A_eq_B, A_lt_B, 
    input wire [7:0] A, B 
); 
    assign A_eq_B = (A == B); 
    assign A_gt_B = (A > B); 
    assign A_lt_B = (A < B); 
endmodule 

○  

 

Module 4.5: Sequential Logic Design using Verilog 

This section focuses on modeling circuits that have memory, where outputs depend on past 
inputs, achieved through explicit clocking and the proper use of non-blocking assignments. 

● 4.5.1 Review of Sequential Logic Properties: 
○ Outputs depend on current inputs AND past inputs (state). 
○ Contains memory elements (flip-flops, latches). 
○ Requires a clock signal for synchronous operation. 
○ Behavior is defined by state transitions. 

● 4.5.2 Registers, Latches, and Flip-flops: 

D-Flip-flop (DFF): The most fundamental sequential element in synchronous design. 
Verilog 
module D_FF ( 
    output reg Q, 
    input wire D, 
    input wire clk 
); 
    always @(posedge clk) begin 
        Q <= D; // Non-blocking assignment for sequential logic 
    end 
endmodule 

○  

D-Flip-flop with Asynchronous Reset: 
Verilog 
module D_FF_AsyncReset ( 
    output reg Q, 
    input wire D, 
    input wire clk, 
    input wire reset_n // Active low reset 
); 



    always @(posedge clk or negedge reset_n) begin 
        if (!reset_n) // Reset condition (active low) 
            Q <= 1'b0; 
        else 
            Q <= D; 
    end 
endmodule 

○  
○ Implied Latches: A common pitfall. A latch is inferred when a reg variable in 

an always @(*) (combinational) block is not assigned a value under all 
possible conditions (e.g., missing an else branch in an if statement, or a 
default case in a case statement). Latches are generally undesirable in 
synchronous designs as they can cause unpredictable timing behavior. 

■ How to Avoid: 
1. Always assign a default value to the reg at the beginning of 

the always @(*) block. 
2. Ensure all if statements have else branches. 
3. Ensure all case statements have default branches. 
4. Use assign statements for simple combinational logic. 

● 4.5.3 Counters: 

Up Counter (Synchronous, N-bit): 
Verilog 
module UpCounter ( 
    output reg [7:0] count, 
    input wire clk, 
    input wire reset_n, // Asynchronous active-low reset 
    input wire enable 
); 
    always @(posedge clk or negedge reset_n) begin 
        if (!reset_n) begin 
            count <= 8'b0; // Reset to 0 
        end else if (enable) begin 
            count <= count + 1; // Increment on enable 
        end 
    end 
endmodule 

○  

Modulo-N Counter (e.g., Modulo-10 counter, counts 0 to 9): 
Verilog 
module Modulo10Counter ( 
    output reg [3:0] count, // 4 bits needed for 0-9 
    input wire clk, 
    input wire reset_n 



); 
    always @(posedge clk or negedge reset_n) begin 
        if (!reset_n) begin 
            count <= 4'b0; 
        end else if (count == 4'd9) begin // Check for max count 
            count <= 4'b0; // Rollover to 0 
        end else begin 
            count <= count + 1; // Increment 
        end 
    end 
endmodule 

○  
● 4.5.4 Shift Registers: 

Serial In, Serial Out (SISO): 
Verilog 
module SISO_ShiftRegister ( 
    output reg [3:0] Q, // 4-bit register 
    input wire DataIn, 
    input wire clk, 
    input wire reset_n 
); 
    always @(posedge clk or negedge reset_n) begin 
        if (!reset_n) begin 
            Q <= 4'b0; 
        end else begin 
            Q <= {Q[2:0], DataIn}; // Shift right, new bit enters MSB 
        end 
    end 
endmodule 

○  

Serial In, Parallel Out (SIPO): 
Verilog 
module SIPO_ShiftRegister ( 
    output wire [3:0] ParallelOut, 
    input wire DataIn, 
    input wire clk, 
    input wire reset_n 
); 
    reg [3:0] shift_reg; // Internal register 
 
    assign ParallelOut = shift_reg; // Parallel output is just the internal register 
 
    always @(posedge clk or negedge reset_n) begin 
        if (!reset_n) begin 



            shift_reg <= 4'b0; 
        end else begin 
            shift_reg <= {shift_reg[2:0], DataIn}; // Shift right, DataIn enters MSB 
        end 
    end 
endmodule 

○  

 

Module 4.6: Testbenches and Simulation 

Writing Verilog for hardware is only half the battle. The other half is ensuring it works 
correctly. Testbenches are crucial for verifying the functional correctness of your designed 
hardware modules through simulation. 

● 4.6.1 Purpose of Testbenches: 
○ Verification: The primary goal is to verify that the "Design Under Test" (DUT) 

behaves as expected under various input conditions. 
○ Stimulus Generation: Apply input signals (stimuli) to the DUT over time. 
○ Output Monitoring: Observe and capture the outputs of the DUT. 
○ Self-Checking: Optionally compare DUT outputs against expected values to 

automate verification. 
○ Debugging: Provide waveforms and messages to help debug design flaws. 
○ No Synthesis: Testbenches are purely for simulation and are never 

synthesized into hardware. Therefore, they can use non-synthesizable 
constructs (e.g., # delays, initial blocks, file I/O). 

4.6.2 Structure of a Basic Testbench: A testbench is typically a top-level Verilog module 
with no inputs or outputs. It instantiates the DUT and generates the necessary input 
waveforms. 
Verilog 
module my_design_tb; // No ports for a testbench 
 
    // 1. Declare signals (wires/regs) for connecting to the DUT's ports 
    // These signals act as the inputs/outputs to your DUT 
    reg clk; 
    reg reset_n; 
    reg [7:0] data_in_A; 
    reg [7:0] data_in_B; 
    wire [7:0] gcd_result_out; 
    wire done_flag; 
 
    // 2. Instantiate the Design Under Test (DUT) 
    // Connect the testbench signals to the DUT's ports 
    GCD_Processor DUT ( 
        .A_in(data_in_A), 



        .B_in(data_in_B), 
        .clk(clk), 
        .reset_n(reset_n), 
        .result_out(gcd_result_out), 
        .done_flag(done_flag) 
    ); 
 
    // 3. Clock Generation (using an always block with forever) 
    parameter CLK_PERIOD = 10; // 10 ns clock period (5 ns high, 5 ns low) 
    initial begin 
        clk = 1'b0; // Initial clock value 
        forever #(CLK_PERIOD / 2) clk = ~clk; // Toggle clock every half period 
    end 
 
    // 4. Initial Block for Stimulus Application and Reset Generation 
    initial begin 
        // Apply reset (active low) 
        reset_n = 1'b0; 
        data_in_A = 8'b0; 
        data_in_B = 8'b0; 
        #(CLK_PERIOD * 2); // Hold reset for 2 clock cycles 
        reset_n = 1'b1; // Release reset 
 
        // Apply stimuli for GCD(48, 18) = 6 
        data_in_A = 8'd48; 
        data_in_B = 8'd18; 
        #(CLK_PERIOD * 1); // Wait for one clock cycle for inputs to register 
 
        // Wait for the done flag, or a maximum time 
        wait(done_flag); 
        $display("GCD(48, 18) = %0d, Expected: 6", gcd_result_out); // Display result 
 
        // Apply new stimuli for GCD(100, 75) = 25 
        data_in_A = 8'd100; 
        data_in_B = 8'd75; 
        #(CLK_PERIOD * 1); // Wait 
        wait(done_flag); 
        $display("GCD(100, 75) = %0d, Expected: 25", gcd_result_out); 
 
        #(CLK_PERIOD * 5); // Allow some time for final signals to settle 
        $finish; // End simulation 
    end 
 
    // 5. Monitoring Outputs (using system tasks) 
    initial begin 
        $display("Time\tClock\tReset\tA_in\tB_in\tGCD_Result\tDone"); 
        $monitor("%0t\t%b\t%b\t%0d\t%0d\t%0d\t\t%b", $time, clk, reset_n, data_in_A, 
data_in_B, gcd_result_out, done_flag); 



    end 
 
endmodule 

●  
● 4.6.3 System Tasks for Simulation: 

○ $display("format_string", arg1, ...);: Prints messages to the 
console during simulation. Behaves like printf in C. 

○ $monitor("format_string", arg1, ...);: Prints messages to the 
console whenever any of its arguments change value. Useful for continuously 
tracking signals. Only one $monitor can be active at a time. 

○ $strobe("format_string", arg1, ...);: Similar to $display, but 
prints values at the very end of the current simulation time step, after all 
values have stabilized. Useful for seeing final results for a given time step. 

○ $time: Returns the current simulation time. 
○ $finish;: Terminates the simulation. 
○ $stop;: Halts the simulation, allowing interaction (e.g., examining 

waveforms). 
○ $dumpfile("filename.vcd");, $dumpvars(0, 

testbench_instance);: Used to create a Value Change Dump (VCD) file 
for waveform viewing in a waveform viewer. 

4.6.4 Self-Checking Testbenches (Briefly): More advanced testbenches include logic to 
automatically check if the DUT's outputs match expected values, reporting "PASS" or "FAIL". 
This reduces manual verification effort. 
Verilog 
// Example within initial block after getting result 
if (gcd_result_out == 8'd6) begin 
    $display("TEST PASSED for GCD(48, 18)"); 
end else begin 
    $display("TEST FAILED for GCD(48, 18): Got %0d, Expected 6", gcd_result_out); 
end 

●  

 

Module 4.7: Synthesis Concepts 

This section bridges the gap between your Verilog code and actual physical hardware, 
explaining how a logic synthesizer translates your description into a circuit of interconnected 
gates. 

● 4.7.1 What is Logic Synthesis? 
○ Definition: Logic synthesis is the automated process of translating a 

high-level HDL description (like Verilog) of a digital circuit into an optimized, 
technology-specific gate-level netlist. 



○ Netlist: A netlist is a description of the circuit in terms of basic logic gates 
(AND, OR, NOT, flip-flops) and their interconnections, typically provided by a 
"standard cell library" for ASICs or specific "logic elements" (like Lookup 
Tables and Flip-flops) for FPGAs. 

○ Goals of Synthesis: 
■ Functionality: Ensure the synthesized netlist implements the exact 

logical behavior described in the HDL code. 
■ Optimization: Minimize area (number of gates), maximize speed 

(meet timing constraints, reduce critical path), and minimize power 
consumption, based on user-defined constraints. 

■ Technology Mapping: Map the optimized logic onto the specific 
gates available in the chosen target technology library. 

● 4.7.2 Synthesizable vs. Non-Synthesizable Constructs Not all Verilog constructs 
describe physical hardware. Some are purely for simulation and will be ignored or 
cause errors during synthesis. 

○ Synthesizable Constructs (Hardware Realizable): These describe 
structures that can be built using physical gates and wires. 

■ module declarations, input, output, inout ports. 
■ wire, reg (when used appropriately to infer combinational or 

sequential logic). 
■ assign statements (for combinational logic). 
■ always @(*) for combinational logic (ensuring no implied latches). 
■ always @(posedge clk) or always @(negedge clk) for 

sequential logic (flip-flops, registers). 
■ if-else, case statements (when fully specified to avoid latches). 
■ Arithmetic, logical, bitwise, relational, reduction, shift, concatenation, 

conditional operators. 
■ parameter (defines constants). 
■ for loops with fixed, calculable bounds (synthesizer "unrolls" them 

into combinational logic). 
○ Non-Synthesizable Constructs (Simulation-Only): These describe 

testbench behavior, timing, or high-level abstract concepts that don't have 
direct hardware equivalents. 

■ initial blocks. 
■ Timing control (#delay). 
■ System tasks ($display, $monitor, $finish, $time, file I/O). 
■ real, realtime data types. 
■ force, release statements (for overriding signals in simulation). 
■ forever, while, repeat loops without fixed bounds (synthesizer 

cannot unroll them). 
■ Recursive functions/tasks. 
■ specify blocks (for timing specification). 

● 4.7.3 Common Synthesis Issues: 
○ Implied Latches: As discussed in Module 4.5, if a reg variable in an always 

@(*) block is not assigned a value under all possible input conditions, the 



synthesizer will infer a latch to hold its value. Latches can lead to race 
conditions and are harder to analyze for timing, making them generally 
undesirable in synchronous designs. 

■ Solution: Always provide a default assignment or ensure all 
conditional paths are covered (else for if, default for case). 

○ Combinational Loops: Occur when a signal's value depends on itself 
through a purely combinational path, creating an oscillation or undefined 
state. 

■ Example: assign A = B & C; assign C = A | D; (creates a 
loop: A -> C -> A). 

■ Problem: Such loops are unstable and problematic in hardware. 
■ Solution: Avoid direct combinational feedback loops. If feedback is 

necessary, it must go through a sequential element (flip-flop) to break 
the loop and synchronize it to a clock. 

○ Over-constrained or Under-constrained Designs: If timing constraints are 
too tight, synthesis might fail. If too loose, the resulting hardware might be 
slower than necessary. 

○ Unintended Logic Sharing: Synthesizers try to optimize. If not careful, 
distinct parts of your logic might get unintentionally merged. 

○ Poorly Written RTL (Register Transfer Level) Code: Ambiguous or 
inefficient Verilog code can lead to sub-optimal synthesis results (larger area, 
slower speed). Clear, concise, and structured RTL coding style is critical. 

● 4.7.4 Mapping to Target Technology: 
○ ASIC (Application-Specific Integrated Circuit): Synthesizers map your 

design onto standard cells from a specific foundry's library. These are 
pre-designed and characterized basic gates (AND, OR, NOT), flip-flops, 
adders, etc., with known area, delay, and power characteristics. 

○ FPGA (Field-Programmable Gate Array): Synthesizers map your design 
onto the FPGA's programmable logic blocks, typically consisting of Look-Up 
Tables (LUTs) (which can implement any Boolean function), flip-flops, and 
dedicated logic like adders or multipliers. The physical interconnections are 
configured electronically. 
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